Внимание! diplom-live.ru не продает дипломы, аттестаты об образовании и иные документы об образовании. Все услуги на сайте предоставляются исключительно в рамках законодательства РФ.

Заказать кур​​совую работу

 8-800-235-24-48

КОНТРОЛЬНЫЕ РАБОТЫ
КУРСОВЫЕ РАБОТЫ
ОТЧЕТ ПО ПРАКТИКЕ
ДИПЛОМНЫЕ РАБОТЫ
КУРСОВОЙ ПРОЕКТ

Распространение и формы кислорода в природе

Расчет электрического привода механизма подъема башенного крана

Подъем груза осуществляется механизмом подъема. На кранах может быть установлено до трех механизмов подъема различной грузоподъемности. Перемещение груза по горизонтали на мостовых и козловых кранах

Стекло

Возникновение стеклоделия связано, по-видимому , с развитием гончарного производства. Получение стекла сперва было, вероятно, случайным. Примером такой возможности является образование стекла в резу

Брестская крепость

Крепость представляла собой цепь бастионных фортов, разделенных Мухавцом и Бугом на Кобринское , Тереспольское , Волынское укрепления. В 1842г. крепость вошла в число действующих крепостей России. Ук

Зрелость

Однако, не будет преувеличением утверждение о том, что до недавнего времени около 90% публикаций по психологии развития занимала психология детей. Вместе с тем процесс развития продолжается во взросл

Скептики и стоики

Интеллектуальная верхушка зажиточных греческих классов проповедует аполитизм, уклонение от общественной деятельности. Отдельный человек чувствует себя крошечной песчинкой в бурном море политических с

Коммерческий банк( по Казахстану)

Коммерческие банки – это старейшая и наиболее массовая группа кредитных учреждений, выполняющих большинство финансовых операций и услуг, известных в практике предпринимательства в рыночной экономике.

Главные элементы жизни: азот и фосфор

Поэтому водородные соединения элементов подгруппы азота в водных растворах не образуют ионов водорода. С кислородом элементы подгруппы азота образуют оксиды общей формулы R 2 O 3 и R 2 O 5 . Оксидам с

Влияние физической культуры на организм человека

Сегодня чисто физический труд не играет существенной роли, его заменяет умственный. Интеллектуальный труд резко снижает работоспособность организма. Но и физический труд, характеризуясь повышенной фи

Скачать работу - Распространение и формы кислорода в природе

Пристли в 1774 г. В 1777 г. А. Лавузье объяснил процессы дыхания и горения и дал название кислороду oxygenium – рождающий кислоты. При нормальных условиях кислород представляет собой бесцветный газ, не имеющий запаха, состоит из двухатомных молекул, имеет несколько б льшую плотность, чем воздух, и плохо растворим в воде.

Кислород имеет высокую электроотрицательность (3.5 по шкале электроотрицательностей) и является сильным окислителем. Он способен соединяться со многими элементами, образуя оксиды.

Реакции образования оксидов очень экзотермичны, и это во многих случаях может приводить к возгоранию соединяющегося с кислородом элемента либо образующегося соединения [4]. Кислород – наиболее распространенный элемент твердой земной коры, гидросферы, живых организмов. Его кларк в литосфере – 47 %, еще выше кларк в гидросфере – 82 % и живом веществе – 70 %. Известно свыше 1400 кислородосодержащих минералов, в которых его спутниками являются десятки элементов периодической системы.

Кислород – циклический элемент классификации В. И. Вернадского, он участвует в многочисленных круговоротах различных масштабов – от небольших, в пределах конкретного ландшафта, до грандиозных, связывающих биосферу с очагами магматизма. [2] На долю кислорода приходится приблизительно половина всей массы земной коры, 89 % массы мирового океана. В атмосфере кислород составляет 23 % массы и 21 % объема [4]. На земной поверхности зеленые растения в ходе фотосинтеза разлагают воду и выделяют свободный кислород (О 2 ) в атмосферу. Как отмечал Вернадский, свободный кислород – самый могущественный деятель из всех известных химических тел земной коры.

Поэтому в большинстве систем биосферы, например в почвах, грунтовых, речных и морских водах, кислород выступает настоящим геохимическим диктатором, определяет геохимическое своеобразие системы, развитие в ней окислительных реакций. За миллиарды лет геологической истории растения сделали атмосферу нашей планеты кислородной, воздух, которым мы дышим, сделан жизнью [1]. Количество реакций окисления, расходующих свободный кислород, огромно. В биосфере они в основном имеют биохимическую природу, т. е.

Осуществляются бактериями, хотя известно чисто химическое окисление. В почвах, илах, реках, морях и океанах, горизонтах подземных вод – везде, где имеются органические вещества и вода, развивается деятельность микроорганизмов, окисляющих органические соединения. Ранее считалось, что свободный кислород в земную кору проникает только до уровня грунтовых вод.

Однако гидрохимики сделали важное открытие – в горах, особенно в аридных зонах, свободный кислород проникает с подземными водами на глубины более 1 км. [2]. В большинстве природных вод, содержащих свободный кислород – сильный окислитель, существуют органические соединения – сильные восстановители.

Поэтому все геохимические системы со свободным кислородом неравновесны и богаты свободной энергией.

Неравновесность выражена тем резче, чем больше в системе живого вещества. Везде в биосфере, где воды, не содержащие свободный кислород (с восстановительной средой), встречают этот газ, возникает кислородный геохимический барьер, на котором концентрируются Fe , Mn , S и другие элементы с образованием руд этих элементов. Ранее господствовало заблуждение, что по мере углубления в толщу земной коры среда становится более восстановительной, однако это не полностью отвечает действительности. На земной поверхности, в ландшафте, может наблюдаться как резко окислительные, так и резко восстановительные условия.

Окислительно-восстановительная зональность наблюдается в озерах – в верхней зоне развивается фотосинтез и наблюдается насыщение и перенасыщение кислородом. Но в глубоких частях озера, в илах происходит только разложение органических веществ. Ниже биосферы, в зоне метаморфизма, степень восстановленности среды часто уменьшается, как и в магматических очагах.

Наиболее восстановительные условия в биосфере возникают на участках энергичного разложения органических веществ, а не на максимальных глубинах. Такие участки характерны и для земной поверхности, и для водоносных горизонтов. В целом в биосфере осуществляется более резкая, чем в нижних частях земной коры и мантии, дифференциация кислорода. Об этом говорят кларки концентрации кислорода в разных системах [2]:

Ультраосновные породы 0,8
Каменные метеориты 0,7
Земная кора 1,0
Извержение породы:
основные 0,8
средние 0,8
кислые 1,03
Биосфера и ее производные:
глины и сланцы 1,1
гидросфера 1,8
живое вещество 1,5
каменный уголь 0,3
нефть 0,08
антрацит 0,02
Ведущая роль живого вещества в геохимической истории кислорода выявляется, таким образом, очень отчетливо.

Существенное внимание уделяется кислороду при изучении вод мирового океана.

Растворенный в морской воде кислород заимствуется из атмосферы на контакте воды с воздухом. Он образуется также при фотосинтезе морских растений. С другой стороны, кислород потребляется при дыхании живых организмов и при окислении различных веществ моря, главным образом органического детрита.

Растворимость кислорода в морской воде зависит от температуры и солености, во всех океанах существует слой с минимальным содержанием кислорода, глубина которого меняется в зависимости от географии. Слои с минимальным содержанием кислорода в океане наиболее часто приурочены к поверхности одной и той же плотности – s t = 27,2 / 27,3 [3]. Причины равновесия между динамическим притоком и биохимическим потреблением в слое минимального содержания кислорода обусловлены главным образом биохимическим расходом кислорода и характером распределения в море органического вещества.

Важной причиной минимума кислородного содержания является существование в океане горизонта перерыва.

Расход кислорода за несколько лет в воде слоя с минимальным содержанием, равно как и в воде глубоководного слоя, весьма незначителен.

Органическое вещество в вертикальной колонне воды, по крайней мере до слоя с минимальным содержанием кислорода, поступает с ее собственной площади поверхности и этим объясняется дефицит кислорода.

Дефицит кислорода тесно связан с увеличением содержания в морской воде углекислоты и с локально протекающим окислительным разложением органического вещества [1]. Результаты масс-спектрометрических исследований изотопного состава растворенного в морской воде воздушного кислорода показали, что между величиной отношения О 18 /О 16 и количеством кислорода, растворенного в морской воде на разной глубине, существует значительное расхождение отрицательного знака.

Использовав в качестве стандарта отношение О 18 /О 16 в воздухе (0,2039%), удалось установить, что разница между процентным содержанием О 18 и таковым воздуха с глубиной постепенно возрастает, достигая максимума в +0,006% в слое с минимальным содержанием кислорода, располагающемся на глубине около 700 м. После прохождения слоя с минимальным содержанием кислорода снова уменьшается, падая на глубине 2870 м примерно до +0,001%. Кислород, освобождающийся при фотосинтезе, имеет более низкую величину отношения О 18 /О 16 , чем атмосферный кислород; по его данным, фактор фракционирования равен 0,983. Это должно приводить к уменьшению относительного количества О 18 в растворенном в морской воде кислороде, так как этот кислород частично производится фитопланктоном. С другой стороны, кислород в морской воде поглощается при дыхании живых организмов, при бактериальных процессах, при окислении органического детрита и т.д.; при этом легкий изотоп кислорода поглощается избирательно.

Вследствие этого следует ожидать, что находящийся в воде остаточный кислород по сравнению с воздухом должен быть относительно обогащен О 18 . Фактор фракционирования изотопов кислорода при процессах поглощения кислорода, растворенного в морской воде, равен 0,991. Необходимо отметить, что азот в газе, растворенном в воде океана, так же как и атмосферный азот, имеет нормальный изотопный состав [3]. Историческая геохимия кислорода.

Согласно геологическим данным, в Архее (свыше 2,5 млрд. лет назад) свободного кислорода в атмосфере отсутствовал или содержался в ничтожном количестве. Об этом свидетельствует отсутствие кислорода в атмосферах других планет солнечной системы.

Фотодиссоциация и другие физико-химические процессы приводили лишь к появлению незначительного количества кислорода, который быстро расходовался на реакции окисления.

Биосфера этой эпохи существенно – в ней не было реакций окисления свободным кислородом, а следовательно, столь характерных для современной земной поверхности красны, бурых желтых почв, илов, осадочных пород.

Кислородные барьеры отсутствовали, окислительно-восстановительные условия были недифференцированными. На земной поверхности, вероятно, преобладала глеевая среда, менее восстановительная, чем в современную эпоху.

Появление зеленых растений знаменовало новый качественный этап в истории Земли как планеты.

Появился свободный кислород в атмосфере и гидросфере.

Главную его массу в то время, вероятно, накопили водоросли океана, т. к. в Докембрии, а возможно еще в нижнем Палеозое (до середины Девона), представляла собой примитивную пустыню с редкими растениями.

Появление свободного кислорода оказало огромное влияние на зону гипергенеза материков – из восстановительной она стала окислительной.

Материки в то время были сплошной зоной окисления, поскольку аккумуляция органического вещества и восстановительные барьеры отсутствовали. Таким образом, развитие жизни привело еще в Докембрии к смене восстановительной зоны гипергенезе окислительной, т. е. кислородом. В Девоне возникли лесные ландшафты, началось углеобразование, и в понижениях суши формировались участки с дефицитом кислорода, с резковосстановительной средой. На повышенных элементах рельефа в почвах и корах выветривания продолжала господствовать окислительная среда. Тогда, около 350 млн. лет назад, начался продолжающийся до сих пор окислительно-восстановительный этап гипергенеза с развитием в ландшафтах резкоокислительных и резковосстановительных условий.

Трахаться в жопу. В ландшафтах возникли кислородные барьеры и связанные с ними концентрации Fe , Mn , Co , S и других элементов.

Кислород в ноосфере. При сжигании топлива ежегодно расходуются миллиарды тонн атмосферного кислорода. В некоторых промышленно развитых странах его сжигается больше, чем вырабатывается в результате фотосинтеза. Таким образом, в ноосфере изменяется круговорот кислорода, в будущем возможно уменьшение его содержпния в атмосфере, последствия чего необходимо учитывать. Формы кислорода Озон Озон – один из аллотропов кислорода. Это голубой газ, обладающий небольшой растворимостью в воде. При низких концентрациях он нетоксичен, но при концентрациях свыше 100 миллионных долей становится токсичным [4]. Образуется О 3 в стратосфере в результате физико-химических реакций под действием ультрафиолетового излучения или разрядов атмосферного электричества (грозы). Его общая масса невелика и при нормальном давлении составила бы слой мощностью 1,7 – 4 мм, но даже такой слой способен задерживать губительную коротковолновую радиацию Солнца.

Возник озоновый экран в начале Палеозоя 600 млн. лет назад [2]. Озон – эндотермичное и очень неустойчивое соединение. При высоких концентрациях он взрывоопасен. О 3 способен реагировать с алкенами, расщепляя их двойные связи в процессе озонолиза. При этом образуются органические соединения, которые называются озонодами [4]. Соединения кислорода Атом кислорода имеет во внешней оболочке шесть электронов, два из которых неспарены. Он может присоединять еще два электрона, в результате чего происходит заполнение его p -орбиталей и образуется оксидный ион О 2– . В таком состоянии кислород имеет степень окисления – 2. атом кислорода может обобществлять два своих неспаренных 2р-электрона с другими атомами, образуя две ковалентные связи, как, например, в молекуле воды.

Благодаря относительно малым размерам своих атомов и высокой электроотрицательности кислород способен стабилизировать атомы других элементов с высокой степенью окисления.

Оксиды. Кислород образует много разнообразных бинарных соединений с другими элементами.

Существуют оксиды металлических и неметаллических элементов.

Оксиды металлов, как правило, обладают основными свойствами, а оксиды неметаллов – кислотными. По этой причине металлические оксиды обладают способностью соединяться с оксидами неметаллов, образуя соли. Также оксиды могут обладать свойствами ионных ( CaO ) либо ковалентных соединений ( CO 2 ). Классификация оксидов по составу не проводит различия металлическими и неметаллическими оксидами либо ионными и ковалентными.

Нормальные оксиды – связь между каким-либо элементом и кислородом ( MgO , SO 3 , SiO 2 ). Пероксиды – связи между элементом и кислородом и между двумя атомами кислорода ( Na 2 O 2 , H 2 O 2 ). Пероксиды – сильные окислители.

Смешанные оксиды – это смесь двух оксидов ( P 3 , O 4 ). Кроме этого, оксиды классифицируются по кислотным или основным свойствам.

Основные оксиды металлов с низкими степенями окисления реагируют с кислотами, образуя соль и воду, а растворяясь в воде, образуют щелочи ( MgO , CaO ). Кислотные оксиды обычно представляют собой простые молекулярные оксиды неметаллов или d -элементов с высокими степенями окисления и, растворяясь в воде, образуют кислоты ( SO 3 ). К амфотерным оксидам принадлежат оксиды металлов с небольшой электроотрицательностью, проявляющие, в зависимости от условий, свойства и кислотных, и основных оксидов ( ZnO ). К числу амфотерных оксидов принадлежит вода.

Нейтральные оксиды не реагируют ни с кислотами, ни с основаниями и не образуют солей ( NO , N 2 O ) [4]. Органические соединения.

Существует огромное количество кислородосодержащих органических веществ.

Спирты – это вещества, состоящие из углеводородных радикалов с одной или несколькими гидроксильными группами –ОН. Фенолы – соединения с одной или несколькими группами –ОН, присоединенными к бензольному кольцу. Эфиры – два углеводородных радикала, соединенные атомом кислорода ( R – O – R ’) или циклические эфиры.

Кислород встречается в органических соединениях в составе карбонильной(=С=О) и карбоксильной групп (–СООН). Такие вещества называются альдегидами ( R – C = O – H ), кетонами ( R – C = O – R ) и карбоновыми кислотами.

Существует также большое количество производных от карбоновых кислот.

Карбоновые кислоты широко распространены в природе.

экспертная оценка строительства в Смоленске
независимая экспертиза залива в Курске
оценка грузового автомобиля цена в Твери