Внимание! diplom-live.ru не продает дипломы, аттестаты об образовании и иные документы об образовании. Все услуги на сайте предоставляются исключительно в рамках законодательства РФ.

Заказать кур​​совую работу

 8-800-235-24-48

КОНТРОЛЬНЫЕ РАБОТЫ
КУРСОВЫЕ РАБОТЫ
ОТЧЕТ ПО ПРАКТИКЕ
ДИПЛОМНЫЕ РАБОТЫ
КУРСОВОЙ ПРОЕКТ

Ответы к государственным экзаменам для эколого-биологического факультета ПетрГУ

Изменение картины мира у наркозависимых лиц

Теперь это уже просто невозможно, поскольку тема наркотиков и наркомании волей-неволей заставляет вспоминать о себе уже буквально на каждом шагу, врываясь во все сферы нашей жизни. Попробуем взглянут

Либерализм в России: основные этапы, идеи, особенности и перспективы

Неоднозначный опыт социальных преобразований последних лет подтверждает непреходящую ценность многих основных идей и принципов в разработке которых отечественный либерализм сыграл огромную роль. В нау

Русский речевой этикет

Государство, подразумевающее по своей природе иерархическое строение власти и институтов власти, различные формы социальной стратификации, различные формы подчинения, нуждается в нормах и правилах пов

Теория этногенеза Л.Н.Гумилева

Генеральнрй идеей творчества Л.Н.Гумилева было евразийство – направление русской исторической мысли, возникшее в первой половине ХХ века. Он не раз выражал согласие с основными историко-методологическ

Феноменология духа в сказках в свете аналитической психологии Юнга

Предметом такого изыскания служит природное явление. В психологии к важнейшим феноменом относится высказывание, и в особенности его формальный и содержательный способы проявления, причём – принимая во

Василий Шукшин

Оставшись с двумя маленькими детьми на руках, 22-летняя Мария Сергеевна Шукшина впала в отчаяние. Есть свидетельства, что в тот момент она хотела отравить себя и детей, лишь бы не "; echo ''; видеть

Современные дискуссии о предмете экономической теории.

Марксистская политическая экономия. PAGEREF _Toc534778083 h 4 Маржинализм. PAGEREF _Toc534778084 h 4 Венская школа. PAGEREF _Toc534778085 h 5 Лозанская школа. PAGEREF _Toc534778086 h 6 Кембриджская шк

Жизнь и творчество Бунина

Детство Вани Бунина прошло в глуши, в одном из не больших родовых поместий (хутор Бутырки Елецкого уезда Орловской губернии). Первоначальные знания Бунин получил от домашнего учителя, 'студента Москов

Скачать работу - Ответы к государственным экзаменам для эколого-биологического факультета ПетрГУ

Энергия может выделяться при окислении водорода, сероводорода, серы, железа, аммиака и др неорганических соединений.

Хемосинтезирующие бактерии играют очень важную роль в биосфере; в основном они участвуют в круговороте азота и таким образом поддерживают плодородие почвы. 7. иммунитет - невосприимчивость организма к инфекционным агентам и чужеродным веществам антигенной природы, несущим чужеродную генетическую информацию. Врождённый И. (неспецифический, конституциональный, видовой) - невосприимчивость, связанная с врождёнными биологическими (наследственно закрепленными) особенностями организма.

Приобретённый И. (специфический) - невосприимчивость организма к инфекционным заболеваниям, возникающая в течение жизни организма.

Различают естественный и искусственный приобретённый И. все дружно вспоминаем иммунологию! 8. вид - основная структурная единица в системе живых организмов, качественный этап их эволюции. Это совокупность популяций особей, способных к скрещиванию с образованием плодовитого потомства и вследствие этого дающих переходные гибридные популяции между местными формами, населяющих определённый ареал, обладающих рядом общих морфо-физиологических признаков и типов взаимоотношений с абиотичной и биотичной средой, отделённых от др. таких же групп особей практически полной нескрещиваемостью в природных условиях.

Видообразование - процесс возникновения новых видов. Из учения Ч. Дарвина о происхождении видов следует, что виды изменяются во времени, приобретая новые признаки и свойства, и дифференцируются так, что из одного вида образуются два или больше новых.

Ведущим и единственным направляющим фактором В. является естественный отбор . Для В. необходимо формирование в природных условиях изоляционных барьеров, которые препятствовали бы скрещиванию, образованию переходных гибридных зон и сглаживанию (нивелировке) достигнутых различий между исходной и новой формами.

Наряду с различными формами географической (территориально-механической) изоляции, известны и разные формы биологической изоляции, которые могут быть разбиты на три основные группы: эколого-этологическую, морфо-физиологическую и собственно генетическую.

Биологическая изоляция приводит к уменьшению вероятности встречи особей разных полов в период размножения, снижению полового влечения и эффективности спаривания, к падению жизнеспособности или плодовитости образующихся в результате скрещивания гибридов. 10. антропогенез - процесс историко-эволюционного формирования физического типа человека, первоначального развития его трудовой деятельности, речи, а также общества.

Антропология – наука о а. К главным проблемам А. относятся: место и время появления древнейших людей; непосредственные предки человека; основные стадии А., движущие силы А. на различных его этапах; соотношение эволюции физического типа человека с историческим прогрессом его культуры, развитием первобытного общества и речи.

Большинство исследователей выделяет в А. три стадии: антропоидные предки человека - высокоразвитые двуногие приматы, систематически пользовавшиеся в качестве орудий естественными предметами (палками, камнями, обломками костей животных); древнейшие и древние люди, с которыми связано появление искусственно изготовленных орудий труда, их усложнение до известных пределов, начальная форма общественной организации; люди современного физического строения, начало этой стадии относится к эпохе позднего палеолита.

Длительность стадий весьма различна: начало первой удалено от нас на 2-3 млн. лет, второй - около 1 млн. лет, третьей - всего на 40-50 тыс. лет.

Первой стадии А. предшествует интенсивная эволюция высших обезьян в различных направлениях. 11. биологические ритмы - циклические колебания интенсивности и характера биологических процессов и явлений. Б. р. наблюдаются почти у всех животных и растений, как одноклеточных, так и многоклеточных, у некоторых изолированных органов и отдельных клеток. Одни Б. р. (биение сердца, частота дыхания и т.д.) относительно самостоятельны, другие - собственно Б. р. - дают возможность организмам приспосабливаться к циклическим изменениям окружающей среды (суточным, сезонным и др.). Солнечно-суточный (24 ч) ритм свойствен большинству физиологических процессов (частоте деления клеток, колебаниям температуры тела, интенсивности обмена веществ и энергии у животных и человека и др.). Лунно-суточный (24,8 ч), или приливный, ритм типичен для большинства животных и растений прибрежной морской зоны и проявляется совместно с солнечно-суточным ритмом в колебаниях двигательной активности, периодичности открывания створок моллюсков, вертикальном распределении в толще воды мелких морских животных и т.п. Лунно-месячный ритм (29,4 сут ) соответствует периодичности изменения уровня морских приливов и проявляется в ритмичности вылупления из куколок насекомых, выплаживающихся в прибрежной зоне, в цикле размножения некоторых червей, некоторых водорослей и многих других животных и растений.

Близок лунно-месячному ритму и менструальный цикл женщин.

Годичный (сезонный) ритм изменения численности и активности животных роста и развития растений широко известен.

Годичные ритмы у животных и растений во многих случаях регулируются изменениями длины светового дня, температуры и других климатических факторов.

Существуют 2 точки зрения на природу Б. р.: 1) Б. р. основаны на происходящих в организме строго периодических физико-химических процессах - 'биологических часах'. Изменения внешних условий служат сигналами времени, которые могут сдвигать фазы ритма. При постоянстве условий ритмичность полностью спонтанна, что доказывается несовпадением циркадного ритма с колебаниями геофизических факторов. 2) Организм воспринимает циклы проникающих геофизических факторов (геомагнитное поле, космические лучи и т.д.). Собственная система измерения времени, если она имеется, играет вспомогательную роль.

Изменения освещения и температуры могут сдвигать фазу Б. р. по отношению к геофизическому циклу. Под влиянием неестественных для организма, но постоянных условий может возникнуть регулярный сдвиг фазы Б. р. 13. прои эукариоты . К прокариотам относятся бактерии и с/зеленые водоросли, к эукариотам – зеленые растения, грибы, животные.

Клетки прокариот не имеют оформленного ядра. ДНК прокариот находится прямо в ц /плазме и не окружен яд/мембраной.

Органелл мало.

Внутренние мембраны встречаются редко; если они есть, то на них обычно протекают процессы дыхания и ф /за. КС жесткие, сод-т полисахариды и аминокислоты.

Основной упрочняющий мат-л – муреин . Хлоропластов нет. Ф/ з идет в мембранах, не имеющих спец упаковки. Нек-е обладают спос-ю к фиксации азота. У эукариот есть настоящее ядро, т.е. генетический материал окружен ядерной оболочкой и образует вполне определенную ядерную структуру.

Органелл много.

Некоторые окружены двойной мембраной.

Основной упрочняющий компонент КС растений – целлюлоза, у грибов – хитин. Ф/ з идет в хлоропластах. Ни один не способен к фиксации азота. 16. микроэволюция - совокупность пусковых эволюционных процессов, протекающих внутри вида, в пределах отдельных или смежных популяций. При этом популяции рассматриваются как элементарные эволюционные структуры; мутации , лежащие в основе наследственной изменчивости, - как элементарный эволюционный материал, а мутационный процесс, волны жизни , разные формы изоляции и естественный отбор - как элементарные эволюционные факторы. Под давлением этих факторов происходит изменение генотипического состава популяции - ведущий пусковой механизм эволюционного процесса. 18. естественный отбор - основной движущий фактор эволюции живых организмов. В отличие от проводимого человеком искусственного отбора , Е. о. обусловливается влиянием на организмы окружающей среды.

Согласно Дарвину, Е. о. - это 'переживание наиболее приспособленных' организмов, вследствие которого на основе неопределённой (неадекватной воздействиям внешней среды) наследственной изменчивости в ряду поколений происходит эволюция. Е. о. могут подвергаться не только отдельные организмы, но и группы их (разновидности, расы). Непрерывно идущий мутационный процесс, изменяющий генотипы , и свободное скрещивание обеспечивают генетическое разнообразие популяции.

Мутации и их комбинации, проявляясь в фенотипе , обусловливают фенотипическое разнообразие организмов. В результате особи данной популяции различно реагируют даже на одни и те же факторы внешней среды. Таким образом, Е. о. может происходить только при наличии мутационной изменчивости, создающей материал для отбора, и представляет главный (но не единственный) фактор эволюции. 19. изменчивость - разнообразие признаков и свойств у особей и групп особей любой степени родства.

Различают И. наследственную и ненаследственную; индивидуальную и групповую; прерывистую и непрерывную; качественную и количественную; независимую И. разных признаков и коррелятивную; направленную и ненаправленную; адаптивную и неадаптивную. При решении общих проблем биологии и особенно эволюции наиболее существенно подразделение И. на наследственную и ненаследственную.

Наследственная И. обусловлена возникновением разных типов мутаций и их комбинаций в последующих скрещиваниях. В каждой достаточно длительно (в ряде поколений) существующей совокупности особей спонтанно и ненаправленно возникают различные мутации, которые в дальнейшем комбинируются более или менее случайно с разными уже имеющимися в совокупности наследственными свойствами. И., обусловленную возникновением мутаций, называют мутационной, а обусловленную дальнейшим перекомбинированием генов в результате скрещивания - комбинационной. В понятие ненаследственной И. входят те изменения признаков и свойств, которые у особей или определённых групп особей вызываются воздействием внешних факторов (питание, температура, свет, влажность и т. д.). Такие ненаследственные признаки ( модификации ) в их конкретном проявлении у каждой особи не передаются по наследству, они развиваются у особей последующих поколений лишь при наличии условий, в которых они возникли. Такая И. называется также модификационной . Например, окраска многих насекомых при низкой температуре темнеет, при высокой - светлеет; однако их потомство будет окрашено независимо от окраски родителей в соответствии с температурой, при которой оно само развивалось.

Основные методы изучения И. - сравнительно-описательный и биометрический.

Совокупность этих методов позволяет исследовать как паратипическую , так и генотипическую компоненты общей фенотипической И. Так, первую можно изучать, сравнивая генотипически идентичные клоны и чистые линии , развивающиеся в разных условиях.

Сложнее выделить чисто генотипическую И. из общей фенотипической. Это возможно сделать на основе биометрического анализа. 22. эмбриогенез - развитие многоклеточного организма животного, состоящего из различных органов и тканей, из относительно просто организованной зиготы или, в случаях бесполого размножения, из неоплодотворённого яйца.

Начало - оплодотворение — происходит в материнском организме или в водной среде.

Мужская половая клетка — подвижный сперматозоид — достигает яйца и проникает в него, часто через специальные отверстия в оболочках — микропиле . При оплодотворении отцовские и материнские хромосомы соединяются в одном ядре, восстанавливая нормальное двойное (диплоидное) их количество.

Биологический смысл оплодотворения состоит в обмене генетической информацией между животными одной популяции. После оплодотворения в период дробления яйцо последовательно многократно делится сначала на крупные, затем на всё более и более мелкие клетки — бластомеры; далее образуется многоклеточный зародыш — бластула . Во время гаструляции происходит обособление зародышевых листков , располагающихся путём различных перемещении так, что внутри оказывается энтодерма , снаружи эктодерма , а между ними мезодерма . Гаструляция протекает у различных животных по-разному, но в результате её создаётся общий план строения организма, сходный даже у отдалённых в систематическом отношении групп животных. В период органогенеза зародышевые листки разделяются на зачатки органов и систем; крупные зачатки дифференцируются на более мелкие, и т. о. создаётся всё более сложная структура целого организма. 24. биоценоз - совокупность растений, животных, микроорганизмов, населяющих участок суши или водоёма и характеризующихся определёнными отношениями как между собой, так и с абиотическими факторами среды. По участию в биогенном круговороте веществ в Б. различают три группы организмов. 1) Продуценты - автотрофные организмы , создающие органические вещества из неорганических; основные продуценты во всех Б. - зелёные растения.

Деятельность продуцентов определяет исходное накопление органических веществ в Б. 2) Консументы - гетеротрофные организмы , питающиеся за счёт автотрофных.

Консументы 1-го порядка - растительноядные животные, а также паразитические бактерии, грибы и другие бесхлорофильные растения, развивающиеся за счёт живых растений.

Консументы 2-го порядка - хищники и паразиты растительноядных организмов.

Бывают консументы 3-го и 4-го порядков, но всего в цепях питания не более 5 звеньев. На каждом последующем трофическом уровне количество биомассы резко снижается.

Деятельность консументов способствует превращениям и перемещениям органических веществ в Б., частичной их минерализации, а также рассеянию энергии, накопленной продуцентами. 3) Редуценты (восстановители) - животные, питающиеся разлагающимися остатками организмов ( сапрофаги ), и особенно непаразитирующие гетеротрофные микроорганизмы - способствуют минерализации органических веществ, их переходу в усвояемое продуцентами состояние.

Взаимосвязи организмов в Б. многообразны. Кроме трофических связей, определяющих цепи питания ( Паразитизм , Симбиоз ),существуют связи, основанные на том, что одни организмы становятся субстратом для других (топические связи), создают необходимый микроклимат и т.п. Часто можно проследить в Б. группы видов, связанные с определённым видом и целиком зависящие от последнего ( консорции ). 28. биосфера - оболочка Земли, состав, структура и энергетика которой в существенных чертах обусловлены прошлой или современной деятельностью живых организмов. Б. охватывает часть атмосферы, гидросферу и верхнюю часть литосферы, которые взаимосвязаны сложными биогеохимическими циклами миграции веществ и энергии; начальный момент этих циклов заключён в трансформации солнечной энергии растениями и синтезе биогенных веществ на Земле. В основе учения Вернадского лежат представления: 1) о планетарной геохимической роли живого вещества (совокупность всех живых организмов, существовавших или существующих в определённый отрезок времени, рассматриваемых как мощный геологический, фактор; в отличие от живых существ, изучаемых в биологии на всех уровнях их организации, начиная от молекулярного, живое вещество, в понимании Вернадского, как биогеохимический фактор,количественно выражается в элементарном химическом составе, массе и энергии) и 2) об организованности Б., являющейся продуктом сложного превращения вещественно-энергетического и информационного потоков живым веществом за время геологической истории Земли. В учении о Б. выделяют следующие основные аспекты: энергетический, освещающий связь биосферно-планетарных явлений с космическими излучениями (в основном солнечными) и радиоактивными процессами в земных недрах; биогеохимический, отражающий роль живого вещества в распределении и поведении атомов (точнее их изотопов) в Б. и её структурах; информационный, изучающий принципы организации и управления, осуществляемые в живой природе в связи с исследованием влияния живого вещества на структуру и состав Б.; пространственно-временной, освещающий формирование и эволюцию различных структур Б. в геологическом времени в связи с особенностями пространственно-временной организованности живого вещества в Б. (проблемы симметрии и др.); ноосферный , изучающий глобальные эффекты воздействия человечества на структуру и химию Б.: разработка полезных ископаемых, получение новых, отсутствовавших до того в Б. веществ (например, чистые алюминий, железо и другие металлы), преобразование биогеоценотических структур Б. (сведение лесов, осушение болот, распашка целинных земель, создание водохранилищ, загрязнение вод, почв и атмосферы продуктами хозяйственной деятельности, внесение удобрений, эрозия почв, лесонасаждение, строительство городов, плотин, промысловое хозяйство и т.д.). 34. биологические мембраны - тонкие пограничные структуры молекулярных размеров, расположенные на поверхности клеток и субклеточных частиц, а также канальцев и пузырьков, пронизывающих протоплазму.

Важнейшая функция Б. м. - регулирование транспорта ионов, сахаров, аминокислот и других продуктов обмена веществ.

Покрывая клетку и отделяя её от окружающей среды, Б. м. обеспечивают морфологическую целостность клеток и субклеточных частиц, их прочность и эластичность.

Поддерживая неравномерное распределение ионов калия, натрия, хлора и др. между протоплазмой и окружающей средой, они способствуют появлению разности биоэлектрических потенциалов . 35. органоиды клетки - постоянные структуры животных и растительных клеток.

Каждый О. осуществляет определённые функции, жизненно необходимые для клеток. Т. о., любое проявление жизнедеятельности клетки - следствие согласованной работы её взаимосвязанных компонентов, особенно О. Митохондрии - постоянно присутствующий в клетках животных и растений органоид , обеспечивающий клеточное дыхание, в результате которого энергия высвобождается или аккумулируется в легко используемой форме. М. отсутствуют лишь у бактерий, синезелёных водорослей и других прокариотов , где их функцию выполняет клеточная мембрана. М. обычно концентрируются в функционально активных зонах клетки. АГ - органоид клетки, с которым связано формирование различных внутриклеточных включений.

Расположен около ядра или вокруг клеточного центра . Функции АГ связаны с образованием различных оформленных продуктов жизнедеятельности клетки: секреторных гранул, желточных пластинок, коллагена, включений липидов, гликогена и меланосомных гранул.

Клеточный центр - постоянная структура почти всех животных и некоторых растительных клеток , определяет полюса делящейся клетки. К. ц . обычно состоит из двух центриолей — плотных гранул размером 0,2—0,8 мкм, расположенных под прямым углом друг к другу. При образовании митотического аппарата центриоли расходятся к полюсам клетки, определяя ориентировку веретена деления клетки . ЭПС - внутриклеточный органоид, представленный системой плоских цистерн, канальцев и пузырьков, ограниченных мембранами; обеспечивает главным образом передвижение веществ из окружающей среды в цитоплазму и между внутриклеточными структурами.

Функция - накопление продуктов синтеза в просветах мембран и их транспорт в зону АГ. Рибосомы - внутриклеточные частицы, осуществляющие биосинтез белка; Р. обнаружены в клетках всех без исключения живых организмов: бактерий, растений и животных; каждая клетка содержит тысячи или десятки тысяч Р. Пластиды - внутриклеточные органеллы цитоплазмы автотрофных растений, содержащие пигменты и осуществляющие синтез органических веществ. У высших растений различают 3 типа П.: зелёные хлоропласты, бесцветные лейкопласты и различно окрашенные хромопласты.

Пигменты ХП у высших растений представлены зелёными хлорофиллами а и в и каротиноидами — красно-оранжевым каротином и жёлтым ксантофиллом. ЛП — небольшие тельца, не имеющие окраски, округлые или вытянутые в длину, присутствуют во всех живых клетках растений. В ЛП из простых органических соединений синтезируются более сложные вещества — крахмал и, возможно, жиры и белки, откладываемые в запас в тканях клубней, корней, корневищ и в эндосперме семян. ХР бывают округлой, неправильно многоугольной или даже игольчатой формы. Они содержат каротиноиды и придают жёлтую и оранжевую окраску осенним листьям, листочками околоцветника, созревающим и зрелым плодам помидоров, рябины, ландыша и др. Все типы П. способны переходить один в другой. Все П. имеют общее происхождение. Они развиваются из т. н. инициальных частиц — небольших пузыревидных образований, отделяющихся от оболочки клеточного ядра. 36. основные положения теории Дарвина.

Важнейшими положениями ТЧД является: 1.Организмам как в прирученном, так и диком состоянии свойственна наследственная изменчивость.

Наиболее обычной и важной формой изменчивости является неопределенная.

Стимулом для возникновения изменчивости организмов служат изменения внешней среды, но характер изменчивости определяется спецификой самого организма, а не направлением изменений внешних условий. 2.В центре внимания эволюционной теории должны находиться не отдельные организмы, а биологические виды и внутривидовые группировки (популяции). 3.Все виды организмов в природе вынуждены вести жестокую борьбу за свое существование.

Борьба за существование для особей данного вида складывается из их взаимодействия с неблагоприятными биотическими и абиотическими факторами внешней среды, а также из их конкуренции между собой.

Последняя является следствием тенденции всякого вида к безграничному размножению и огромного «перепроизводства» особей в каждом поколении. По ЧД, важнейшей является именно внутривидовая борьба. 4.Неизбежным результатом наследственной изменчивости организмов и борьбы за существование является ЕО – преимущественное выживание и обеспечение потомством лучше приспособленных особей. Хуже приспособленные организмы (и целые виды) вымирают, не оставляя потомства. 5.Следствием борьбы за существование и ЕО являются: развитие приспособлений видов к условиям их существования (обусловливающее «целесообразность» строения организмов), дивергенция (развитие от общего предка нескольких дочерних видов, все большее расхождение их признаков в эволюции) и прогрессивная эволюция (усложнение и усовершенствование организации). 6.Частным случаем ЕО является половой отбор, который обеспечивает развитие признаков, связанных с функцией размножения. 7.Породы домашних животных и сорта с/ х растений созданы посредством ИО, аналогичного ЕО, но ведущегося человеком в своих интересах.

Необходимо упомянуть о некоторых нечеткостях и отдельных ошибочных утверждениях ЧД. К ним относятся: 1) признание возможности эволюционных изменений на основе определенной изменчивости и упражнения и неупражнения органов; 2) переоценка роли перенаселения для обоснования борьбы за существование; 3) преувеличенное внимание к внутривидовой борьбе в объяснении дивергенции; 4) недостаточная разработанность концепции биологического вида как формы организации живой материи, принципиально отличающейся от подвидовых и надвидовых таксонов; 5) непонимание специфики макроэволюционных преобразований организации и их соотношений с видообразованием. 39. основы классической генетики . Законы Менделя.

Первым М. з . считали закон доминирования, по которому в первом поколении от скрещивания особей, различающихся по аналогичным - аллельным признакам, проявляется лишь один из них - доминантный, второй же, ему альтернативный, - остаётся скрытым, рецессивным.

Однако вскоре были обнаружены 'нарушения' этого М. з . - промежуточное проявление обоих признаков в 1-м поколении.

Вследствие этого первый М. з . стали называть законом единообразия первого поколения гибридов.

Второй М. з ., обычно называемый законом расщепления, осуществляется при скрещивании между собой гибридов первого поколения или при их самоопылении. В этом случае пары аллельных генов расходятся, в результате чего в потомстве появляются в определённых численных отношениях доминантные и рецессивные признаки, скрытые в предыдущем поколении.

Наконец, третьим М. з . считался закон независимого комбинирования признаков. Он осуществляется при скрещивании, в котором сочетаются более одной пары аллельных генов. В результате в потомстве наблюдается свободное комбинирование всех участвующих в скрещивании пар аллелей и возникают все возможные их комбинации в определённых численных отношениях. Этот закон - прямое следствие явлений расщепления.

Поэтому правильнее называть его законом независимого расщепления различных пар аллелей. 38. типы делений клетки . Митоз – непрямое деление клетки.

Стадии: В профазе происходят реорганизация ядра с конденсацией и спирализацией хромосом, разрушение ядерной оболочки и формирование митотического аппарата путём синтеза белков и 'сборки' их в ориентированную систему веретена деления.

Метафаза заключается в движении хромосом к экваториальной плоскости, формировании экваториальной пластинки и в разъединении хроматид.

Анафаза - стадия расхождения хромосом к полюсам.

Телофаза заключается в реконструкции дочерних ядер из хромосом, собравшихся у полюсов, разделении клеточного тела и окончательном разрушении митотического аппарата. Мейоз – способ деления в результате которого происходит уменьшение числа хромосом в два раза и одна диплоидная клетка после двух быстро следующих друг за другом делений даёт начало 4 гаплоидным.

Биологическое значение М. заключается в поддержании постоянства кариотипа в ряду поколений организмов данного вида и обеспечении возможности рекомбинации хромосом и генов при половом процессе. Фазы: профаза1 подразделяется на 5 стадий.

Лептотена - стадия тонких нитей, когда хромосомы слабо спирализованы и наиболее длинны, видны утолщения - хромомеры.

Зиготена - стадия начала попарного , бок о бок соединения (конъюгации) гомологичных хромосом; при этом гомологичные хромомеры взаимно притягиваются и выстраиваются строго друг против друга.

Пахитена - стадия толстых нитей; гомологичные хромосомы стабильно соединены в пары - биваленты, число которых равно гаплоидному числу хромосом. В каждой хромосоме бивалента обнаруживаются 2 хроматиды; т. о., бивалент состоит из 4 гомологичных хроматид; на этой стадии происходит кроссинговер, осуществляющийся на молекулярном уровне; цитологические последствия его обнаруживаются на следующей стадии.

Диплотена - стадия раздвоившихся нитей; гомологичные хромосомы начинают отталкиваться друг от друга, но оказываются связанными, обычно в 2-3 точках на бивалент, где видны хиазмы (перекресты хроматид) - цитологическое проявление кроссинговера.

Диакинез - стадия отталкивания гомологичных хромосом, которые по-прежнему соединены в биваленты хиазмами, перемещающимися на концы хромосом.

Метафаза I - биваленты выстраиваются в средней части веретена деления клетки, ориентируясь центромерами гомологичных хромосом к противоположным полюсам веретена. В анафазе I гомологичные хромосомы с помощью нитей веретена расходятся к полюсам. В телофазе I у каждого полюса начинается деспирализация хромосом и формирование дочерних ядер и клеток. Далее следует короткая интерфаза и начинается второе деление М. Профаза II, метафаза II, анафаза II и телофаза II проходят быстро; при этом в конце метафазы II расщепляются центромеры , и в анафазе II расходятся к полюсам хроматиды каждой хромосомы.

Амитоз – прямое деление ядра. При А., в отличие от митоза , или непрямогоделения ядра, ядерная оболочка и ядрышки не разрушаются, веретено деления в ядре не образуется, хромосомы остаются в рабочем ( деспирализованном ) состоянии, ядро или перешнуровывается или в нём, внешне неизменном, появляется перегородка; деления тела клетки - цитотомии , как правило, не происходит; обычно А. не обеспечивает равномерного деления ядра и отдельных его компонентов. 41. генетический код - система зашифровки наследственной информации в молекулах нуклеиновых кислот, реализующаяся у животных, растений, бактерий и вирусов в виде последовательности нуклеотидов . Установлены следующие основные закономерности, касающиеся Г. к.: 1) между последовательностью нуклеотидов и кодируемой последовательностью аминокислот существует линейное соответствие; 2) считывание Г. к. начинается с определённой точки; 3) считывание идёт в одном направлении в пределах одного гена; 4) код является неперекрывающимся ; 5) при считывании не бывает промежутков; 6) Г. к., как правило, является вырожденным, т. е. 1 аминокислоту кодируют 2 и более триплетов-синонимов; 7) кодовое число равно трём; 8) код в живой природе универсален.

Реализация Г. к. в клетке происходит в два этапа.

Первый из них протекает в ядре; он носит название транскрипции и заключается в синтезе молекул и-РНК на соответствующих участках ДНК. При этом последовательность нуклеотидов ДНК 'переписывается' в нуклеотидную последовательность РНК. Второй этап - трансляция - протекает в цитоплазме, на рибосомах; при этом последовательность нуклеотидов и-РНК переводится в последовательность аминокислот в белке: этот этап протекает при участии т-РНК и соответствующих ферментов. 45. Основные направления эволюционного процесса. А. Н. Северцев выделил три главных направления эволюционных преобразований: 1) морфофизиологический прогресс (ароморфоз) – повышение общего уровня организации, ее усложнение; 2) морфофизиологический регресс ( дегенирация=катаморфоз ) – понижение и упрощение общего уровня организации; 3) идиоадаптация (алломорфоз) – развитие частных приспособлений, не изменяющих общий уровень организации. ароморфозы – это такие изменения строения и функций органов, которые имеют общее значение для организма в целом и поднимают энергию его жизнедеятельности на новый качественный уровень.

Конкретное содержание ароморфозов не сводится лишь к энергитическому аспекту совершенствования организации, но охватывает любые морфофизиологические преобразования, соответствующие указанным основным критериям арогенеза (дифференциации, интеграции, рационализации и оптимизации, интенсификации функций, повышению уровня гомеостаза, возрастанию усваиваемой информации и усовершенствованию ее обработки в организме). Понятие идиоадаптаций (или алломорфозов) в концепции А. Н. Северцова объединяет очень широкий круг эволюционных изменений организмов – от самых незначительных частных приспособлений к специфическим условиям существования и образу жизни отдельных видов до адаптаций общего значения, создающих предпосылки для значительного расширения среды обитания или освоения качественно новой адаптивной зоны.

Примером таких «частных адаптаций общего значения» являются кожное дыхание у амфибий, раковина моллюсков, особенности осевого скелета и мускулатуры тела змей, связанные с особым способом перемещения этих рептилий. 46. ДНК - присутствующая в каждом организме и в каждой живой клетке, главным образом в её ядре, нуклеиновая кислота , содержащая в качестве сахара дезоксирибозу , а в качестве азотистых оснований аденин , гуанин, цитозин и тимин . Играет очень важную биологическую роль, сохраняя и передавая по наследству генетическую информацию о строении, развитии и индивидуальных признаках любого живого организма. ДНК — биополимер , состоящий из многих мономеров — дезоксирибонуклеотидов , соединённых через остатки фосфорной кислоты в определённой последовательности, специфичной для каждой индивидуальной ДНК. Уникальная последовательность дезоксирибонуклеотидов в данной молекуле ДНК представляет собой кодовую запись биологической информации. Две такие полинуклеотидные цепочки образуют в молекуле ДНК двойную спираль, в которой комплементарные основания — аденин с тимином и гуанин с цитозином — связаны друг с другом при помощи водородных связей и так называемых гидрофобных взаимодействий. ДНК служит также матрицей для синтеза рибонуклеиновых кислот (РНК), определяя тем самым их первичную структуру ( транскрипция ). Через посредство и-РНК осуществляется трансляция — синтез специфических белков, структура которых задана ДНК в виде определённой нуклеотидной последовательности. 47. РНК - тип нуклеиновых кислот , имеющих универсальное распространение в живой природе; содержат в качестве углеводного компонента рибозу , а в качестве азотистых оснований аденин и гуанин и урацил и цитозин . Р. к. играют важнейшую биологическую роль во всех живых организмах, участвуя в реализации генетической информации и биосинтезе белков . Макромолекулярная структура Р. к. представлена в основном однонитчатыми полинуклеотидными цепями, которые образуют двуспиральные участки по принципу комплементарности оснований. В клетках бактерий, животных и растений различные типы Р. к. выполняют неодинаковые биологические функции и различаются по строению и метаболизму.

Важнейшие типы РНК следующие.

Рибосомные Р. к. ( рРНК ) входят в состав рибосом и составляют основную массу клеточных Р. к.

Размеры и структура рибосомных Р. к. у организмов разных видов неодинаковы. Их биологическая роль не вполне выяснена, целостность их молекул необходима для биосинтеза белков в рибосомах. т-РНК - биологическая роль заключается в присоединении активированных аминокислотных остатков и переносе (транспорте) их на рибосомы, т. е. к месту синтеза полипептидных цепочек. Для каждой аминокислоты имеются свои специфические тРНК (обычно более одной). м-РНК представляют собой наиболее разнородную группу и играют роль матриц при биосинтезе белков в процессе трансляции (считывания нуклеотидного кода и перевода его в определённую последовательность аминокислот в полипептидных цепях белков). Все виды Р. к. синтезируются в клетках на матрице ДНК, образуя последовательность рибонуклеотидов , комплементарную последовательности дезоксирибонуклеотидов в ДНК (процесс транскрипции). В клеточном ядре обнаружены гигантские молекулы — предшественники мРНК , большая часть которых распадается внутри ядра и только сравнительно небольшая часть молекулы переходит в цитоплазму и образует собственно мРНК . 49. белки - высокомолекулярные природные органические вещества, построенные из аминокислот и играющие фундаментальную роль в структуре и жизнедеятельности организмов.

Именно Б. осуществляют обмен веществ и энергетические превращения, неразрывно связанные с активными биологическими функциями. Б. входят в состав сложных клеточных структур - органелл. И хотя органеллы содержат также другие вещества, Б. особенно важны; они - основные структурообразователи и играют ведущую роль в выполнении физиологических функций.

Молекулы Б. имеют массу от десятков тыс. до 1 млн. и выше. Одни Б. легко растворяются в воде, другие требуют для растворения небольших концентраций солей, третьи переходят в раствор только под воздействием сильных щелочей и т.п.

Растворимые Б. - гидрофильные коллоиды , активно связывающие воду; их растворы обладают значительной вязкостью, низким осмотическим давлением.

Молекулы Б. не проходят через полупроницаемые мембраны, обладают слабой способностью к диффузии.

Структура – белок всех организмов состоит из 20 видов аминокислот.

Каждый Б. характеризуется определённым ассортиментом и количественным соотношением аминокислот. В молекулах Б. аминокислоты соединены между собой пептидными связями (-СО-NH-) в линейной последовательности, составляющей так называемую первичную структуру Б. Пространственная конфигурация полипептидной цепи Б. определяется его первичной структурой и условиями среды. При обычных условиях (температура не выше 40 С, нормальное давление и т.д.) Б. характеризуются внутримолекулярной упорядоченностью. 'Хребет' полипептидной цепи местами может закручиваться спиралью или образовывать полностью вытянутые отрезки (вторичная структура). В обоих случаях возникает система водородных связей.

Полипептидная цепь в целом 'упаковывается' и жестко фиксируется с помощью взаимодействий боковых групп аминокислот (третичная структура). В зависимости от укладки полипептидных цепей форма молекул Б. варьирует от фибриллярной (вытянутой, нитеобразной) до глобулярной (округлой). 53. мутагенез - процесс возникновения наследственных изменений - мутаций , появляющихся естественно (спонтанно) или вызываемых различными физическими или химическими факторами - мутагенами . В основе М. лежат изменения в молекулах нуклеиновых кислот, хранящих и передающих наследственную информацию. Эти изменения выражаются в виде генных мутаций или хромосомных перестроек. Кроме того, возможны нарушения митотического аппарата клеточного деления, что ведёт к геномным мутациям типа полиплоидии или анеуплоидии . Повреждения нуклеиновых кислот (ДНК, РНК) заключаются либо в нарушениях углеводно-фосфатного остова молекулы, либо в химических изменениях азотистых оснований, непосредственно представляющих генные мутации или приводящих к их появлению в ходе последующей репликации поврежденной молекулы. При этом пуриновое основание заменяется другим пуриновым или пиримидиновое основание - др. пиримидиновым ( транзиции ), либо пуриновое основание заменяется пиримидиновым или пиримидиновое - пуриновым ( трансверсии ). Геномные мутации заключаются в изменении числа хромосом в клетках организма. К ним относятся: полиплоидия - увеличение числа наборов хромосом, когда вместо обычных для диплоидных организмов 2 наборов хромосом их может быть 3, 4 и т. д.; гаплоидия - вместо 2 наборов хромосом имеется лишь один; анеуплоидия - одна или несколько пар гомологических хромосом отсутствуют или представлены не парой, а лишь одной хромосомой либо, напротив, 3 или более гомологичными партнёрами. К хромосомным М., или хромосомным перестройкам , относятся: инверсии - участок хромосомы перевёрнут на 180 градусов, так что содержащиеся в нём гены расположены в обратном порядке по сравнению с нормальным; транслокации - обмен участками двух или более негомологичных хромосом; делеции - выпадение значительного участка хромосомы; нехватки - выпадение небольшого участка хромосомы; дупликации - удвоение участка хромосомы; фрагментации - разрыв хромосомы на 2 части или более.

Генные М. представляют собой стойкие изменения химического строения отдельных генов и, как правило, не отражаются на наблюдаемой в микроскоп морфологии хромосом.

Известны также М. генов, локализованных не только в хромосомах, но и в некоторых самовоспроизводящихся органеллах цитоплазмы. 56. вирусы – мельчайшие живые организмы, размеры которых 20-300 нм. Это возбудители инфекционных болезней растений, животных и человека, размножающиеся только в живых клетках. В. вызывают многие заболевания: оспу, корь, грипп, полиомиелит, чуму рогатого скота и птиц, бешенство, ряд заболеваний рыб и земноводных, желтуху шелкопряда, мозаичную болезнь табака, закукливание овса, многие заболевания грибов и сине-зелёных водорослей и др.

Обширный отряд В., поражающих бактерии, составляют бактериофаги . Зрелые частицы В. - вирионы , или вироспоры , приспособлены к перенесению неблагоприятных условий вне организма и не обнаруживают на этой стадии никаких признаков жизни. Попав в организм, в чувствительные к В. клетки, вироспоры переходят в стадию развития и размножения, которая завершается образованием дочерних зрелых частиц В. В. имеют белковую оболочку - капсид и внутреннее содержимое - нуклеокапсид , состоящее главным образом из нуклеиновой кислоты (НК) - ДНК или РНК. Многие В. имеют поверхностную оболочку, покрывающую белковую.

Отдельные элементы белковой оболочки называются капсомерами . У некоторых В. (например, мозаичной болезни табака) НК в виде спирали включена в белковую оболочку, без разрушения которой не может быть освобождена. У других В. (например, жёлтой мозаики турнепса) спирально закрученная нить НК лежит в капсиде , как в коробочке, и может выйти оттуда без разрушения оболочки. НК - носители наследственной информации о строении и свойствах В.; белки В. защищают НК, а также обусловливают ферментативные и антигенные свойства В. Строение вирусных частиц, приспособленных к перенесению неблагоприятных условий, может быть и более сложным; таковы, например, полиэдры, образуемые некоторыми В. насекомых (они состоят из оболочки, кристаллической белковой массы и включенных в неё частиц В.). 57. углеводы - обширная группа органических соединений, входящих в состав всех живых организмов.

Первые известные представители этого класса веществ по составу отвечали общей формуле C m H 2n O n , то есть углерод + вода (отсюда название). У. принято делить на три основных группы: моносахариды, олигосахариды и полисахариды.

Простейший из моносахаридов - глицериновый альдегид - содержит один асимметрический атом углерода. Цепь углеродов – 3-9атомов.

Олигосахариды содержат в своём составе 2-10 моносахаридов, связанных гликозидными связями.

Наиболее распространены в природе дисахариды сахароза , трегалоза , лактоза . Полисахариды - высокомолекулярные, линейные или разветвленные соединения, молекулы которых построены из моносахаридов, связанных гликозидными связями. В состав полисахаридов могут входить также заместители неуглеводной природы (остатки фосфорной, серной и жирных кислот). В свою очередь цепи полисахаридов могут присоединяться к белкам с образованием гликопротеидов . У. составляют большую (часто основную) часть пищевого рациона человека. В связи с этим они широко используются в пищевой и кондитерской промышленности (крахмал, сахароза, пектиновые вещества, агар ). Их превращения при спиртовом брожении лежат в основе процессов получения этилового спирта, пивоварения, хлебопечения; др. типы брожения позволяют получить глицерин, молочную, лимонную, глюконовую кислоты и др. вещества.

Глюкоза, аскорбиновая кислота, сердечные гликозиды, углеводсодержащие антибиотики, гепарин широко применяются в медицине.

Целлюлоза служит основой текстильной промышленности, получения искусственного целлюлозного волокна, бумаги, пластмасс.

Липиды - жироподобные вещества, входящие в состав всех живых клеток и играющие важную роль в жизненных процессах.

Будучи одним из основных компонентов биологических мембран , Л. влияют на проницаемость клеток и активность многих ферментов, участвуют в передаче нервного импульса, в мышечном сокращении, создании межклеточных контактов, в иммунохимических процессах. Др. функции Л. - образование энергетического резерва и создание защитных водоотталкивающих и термоизоляционных покровов у животных и растений, а также защита различных органов от механических воздействий.

Большинство Л. - производные высших жирных кислот, спиртов или альдегидов. В зависимости от химического состава Л. подразделяют на несколько классов.

Простые Л. включают вещества, молекулы которых состоят только ив остатков жирных кислот (или альдегидов) и спиртов, к ним относятся жиры ( триглицериды и др. нейтральные глицериды), воски (эфиры жирных кислот и жирных спиртов) и диольные Л. (эфиры жирных кислот и этиленгликоля или др. двухатомных спиртов). Сложные Л. включают производные ортофосфорной кислоты ( фосфолипиды ) и Л., содержащие остатки сахаров ( гликолипиды ). 59. экология - биологическая наука, изучающая организацию и функционирование надорганизменных систем различных уровней: популяций, видов, биоценозов (сообществ), экосистем, биогеоценозов и биосферы. Часто Э. определяют также как науку о взаимоотношениях организмов между собой и с окружающей средой.

Современная Э. интенсивно изучает также проблемы взаимодействия человека и биосферы.

Основная задача Э. на современном этапе - детальное изучение количественными методами основ структуры и функционирования природных и созданных человеком систем.

Изучение популяций - естественных совокупностей особей одного вида, являющихся одновременно элементами системы вида и системы биогеоценоза, показало наличие у них сложной иерархической структуры. В задачи популяционной Э. входит изучение пространственного размещения особей, возрастной, половой и этологической (поведенческой) структуры популяции. Много внимания уделяется изучению структуры и функционирования биоценозов; установлению закономерных соотношений численностей видов в сообществе.

Разнообразие явлений, изучаемых современной Э., объясняет её широкие связи со многими естественными и гуманитарными науками.

оценка самолета в Курске
оценка изобретений в Твери
оценка для наследства в Орле